A. Pendahuluan
Ketika hendak membuat suatu keputusan yang komplek atau memecahkan masalah, seringkali kita meminta nasehat atau berkonsultasi dengan seorang pakar atau ahli. Seorang pakar adalah seseorang yang mempunyai pengetahuan dan pengalaman spesifik dalam suatu bidang; misalnya pakar komputer, pakar uji tak merusak, pakar politik dan lain-lain. Semakin tidak terstruktur situasinya, semakin mengkhusus (dan mahal) konsultasi yang dibutuhkan.
Sistem Pakar (Expert System) adalah usaha untuk menirukan seorang pakar. Biasanya Sistem Pakar berupa perangkat lunak pengambil keputusan yang mampu mencapai tingkat performa yang sebanding seorang pakar dalam bidang problem yang khusus dan sempit. Ide dasarnya adalah: kepakaran ditransfer dari seorang pakar (atau sumber kepakaran yang lain) ke komputer, pengetahuan yang ada disimpan dalam komputer, dan pengguna dapat berkonsultasi pada komputer itu untuk suatu nasehat, lalu komputer dapat mengambil inferensi (menyimpulkan, mendeduksi, dll.) seperti layaknya seorang pakar, kemudian menjelaskannya ke pengguna tersebut, bila perlu dengan alasan- alasannya. Sistem Pakar malahan terkadang lebih baik unjuk kerjanya daripada seorang pakar manusia!
Kepakaran (expertise) adalah pengetahuan yang ekstensif (meluas) dan spesifik yang diperoleh melalui rangkaian pelatihan, membaca, dan pengalaman. Pengetahuan membuat pakar dapat mengambil keputusan secara lebih baik dan lebih cepat daripada non- pakar dalam memecahkan problem yang kompleks. Kepakaran mempunyai sifat berjenjang, pakar top memiliki pengetahuan lebih banyak daripada pakar yunior.
Tujuan Sistem Pakar adalah untuk mentransfer kepakaran dari seorang pakar ke komputer, kemudian ke orang lain (yang bukan pakar). Proses ini tercakup dalam rekayasa pengetahuan (knowledge engineering) yang akan dibahas kemudian.
B. Manfaat dan Keterbatasan Sistem Pakar
1. Manfaat Sistem Pakar
- Mengapa Sistem Pakar menjadi sangat populer? Hal ini disebabkan oleh sangat banyaknya kemampuan dan manfaat yang diberikan oleh Sistem Pakar, di antaranya :
- Meningkatkan output dan produktivitas, karena Sistem Pakar dapat bekerja lebih cepat dari manusia.
- Meningkatkan kualitas, dengan memberi nasehat yang konsisten dan mengurangi kesalahan.
- Mampu menangkap kepakaran yang sangat terbatas.
- Dapat beroperasi di lingkungan yang berbahaya.
- Memudahkan akses ke pengetahuan.
- Handal. Sistem Pakar tidak pernah menjadi bosan dan kelelahan atau sakit. Sistem Pakar juga secara konsisten melihat semua detil dan tidak akan melewatkan informasi yang relevan dan solusi yang potensial.
- Meningkatkan kapabilitas sistem terkomputerisasi yang lain. Integrasi Sistem Pakar dengan sistem komputer lain membuat lebih efektif, dan mencakup lebih banyak aplikasi .
- Mampu bekerja dengan informasi yang tidak lengkap atau tidak pasti. Berbeda dengan sistem komputer konvensional, Sistem Pakar dapat bekerja dengan inofrmasi yang tidak lengkap. Pengguna dapat merespon dengan: “tidak tahu” atau “tidak yakin” pada satu atau lebih pertanyaan selama konsultasi, dan Sistem Pakar tetap akan memberikan jawabannya.
- Mampu menyediakan pelatihan. Pengguna pemula yang bekerja dengan Sistem Pakar akan menjadi lebih berpengalaman. Fasilitas penjelas dapat berfungsi sebagai guru.
- Meningkatkan kemampuan problem solving, karena mengambil sumber pengetahuan dari banyak pakar.
- Meniadakan kebutuhan perangkat yang mahal.
- Fleksibel.
2. Keterbatasan Sistem Pakar
Metodologi Sistem Pakar yang ada tidak selalu mudah, sederhana dan efektif. Berikut adalah keterbatasan yang menghambat perkembangan Sistem Pakar :
- Pengetahuan yang hendak diambil tidak selalu tersedia.
- Kepakaran sangat sulit diekstrak dari manusia.
- Pendekatan oleh setiap pakar untuk suatu situasi atau problem bisa berbeda- beda, meskipun sama-sama benar.
- Adalah sangat sulit bagi seorang pakar untuk mengabstraksi atau menjelaskan langkah mereka dalam menangani masalah
- Pengguna Sistem Pakar mempunyai batas kognitif alami, sehingga mungkin tidak bisa memanfaatkan sistem secara maksimal.
- Sistem Pakar bekerja baik untuk suatu bidang yang sempit.
- Banyak pakar yang tidak mempunyai jalan untuk mencek apakah kesimpulan mereka benar dan masuk akal.
- Istilah dan jargon yang dipakai oleh pakar dalam mengekspresikan fakta seringkali terbatas dan tidak mudah dimengerti oleh orang lain.
- Pengembangan Sistem Pakar seringkali membutuhkan perekayasa pengetahuan (knowledge engineer) yang langka dan mahal.
- Kurangnya rasa percaya pengguna menghalangi pemakaian Sistem Pakar.
- Transfer pengetahuan dapat bersifat subyektif dan biasa.
C. Komponen Sistem Pakar
Secara umum, Sistem Pakar biasanya terdiri atas beberapa komponen yang masing- masing berhubungan seperti terlihat pada Gambar II - 1.
Basis Pengetahuan, berisi pengetahuan yang dibutuhkan untuk memahami, memformulasi, dan memecahkan masalah. Basis pengetahuan tersusun atas 2 elemen dasar:
1.
Fakta, misalnya: situasi, kondisi, dan kenyataan dari permasalahan yang ada, serta teori dalam bidang itu
2.
Aturan, yang mengarahkan penggunaan pengetahuan untuk memecahkan masalah yang spesifik dalam bidang yang khusus
Mesin Inferensi (Inference Engine), merupakan otak dari Sistem Pakar. Juga dikenal sebagai penerjemah aturan (rule interpreter). Komponen ini berupa program komputer yang menyediakan suatu metodologi untuk memikirkan (reasoning) dan memformulasi kesimpulan. Kerja mesin inferensi meliputi:
1. Menentukan aturan mana akan dipakai
2. Menyajikan pertanyaan kepada pemakai, ketika diperlukan.
3. Menambahkan jawaban ke dalam memori Sistem Pakar.
4. Menyimpulkan fakta baru dari sebuah aturan
5. Menambahkan fakta tadi ke dalam memori.
Papan Tulis (Blackboard/Workplace), adalah memori/lokasi untuk bekerja dan menyimpan hasil sementara. Biasanya berupa sebuah basis data.
Antarmuka Pemakai (User Interface). Sistem Pakar mengatur komunikasi antara pengguna dan komputer. Komunikasi ini paling baik berupa bahasa alami, biasanya disajikan dalam bentuk tanya-jawab dan kadang ditampilkan dalam bentuk gambar/grafik. Antarmuka yang lebih canggih dilengkapi dengan percakapan (voice communication).
Subsistem Penjelasan (Explanation Facility). Kemampuan untuk menjejak (tracing) bagaimana suatu kesimpulan dapat diambil merupakan hal yang sangat penting untuk transfer pengetahuan dan pemecahan masalah. Komponen subsistem penjelasan harus dapat menyediakannya yang secara interaktif menjawab pertanyaan pengguna, misalnya:
1. “Mengapa pertanyaan tersebut anda tanyakan?”
2. “Seberapa yakin kesimpulan tersebut diambil?”
3. “Mengapa alternatif tersebut ditolak?”
4. “Apa yang akan dilakukan untuk mengambil suatu kesimpulan?”
5. “Fakta apalagi yang diperlukan untuk mengambil kesimpulan akhir?”
Sistem Penghalusan Pengetahuan (
Knowledge Refining System). Seorang pakar mempunyai sistem penghalusan pengetahuan, artinya, mereka bisa menganalisa sendiri performa mereka, belajar dari pengalaman, serta meningkatkan pengetahuannya untuk konsultasi berikutnya. Pada Sistem Pakar, swa-evaluasi ini penting sehingga dapat menganalisa alasan keberhasilan atau kegagalan pengambilan kesimpulan, serta memperbaiki basis pengetahuannya.